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1. INTRODUCTION 

  

This study was a continuation of the applied research project reported by Norquist and 

Balasubramaniam [1]. We continued our investigation of the utility of optical observations of the 

solar chromosphere in the diagnosis of flare probability. Because we felt we were not ready to 

project the flare probability estimate ahead in time, we stayed with our focus on inferring flaring 

likelihood at the observation time. As in the previous study, we used observed hydrogen-alpha 

(Hα) intensity from the U. S. Air Force Improved Solar Observing Optical Network (ISOON) 

telescope at Sacramento Peak, NM (Neidig et al. [2]). Sequences of Hα images at one-minute 

intervals and one arc second grid spacing for selected sub-regions of solar active regions over 5-

10 hour periods comprised the data set. We performed principal component analysis (PCA) on 

the sequences to derive the eigenvectors and associated eigenvalues. Sub-region average Hα 

intensity and whole disk 1-8 Å x-ray flux from the NOAA Geostationary Operational 

Environmental Satellite (GOES) determined a flaring degree category at each image time. A 

subset of leading eigenvector elements at each time served as the predictors and flaring category 

constituted the predictand in employing multivariate discriminant analysis (MVDA). We 

invoked MVDA on selected image sequences making up a “development set.” We then applied 

resulting discriminant vectors to the eigenvector elements of “application set” sequences to 

determine flaring category probability at observation times. Comparison of diagnosed probability 

with specified flaring category over all application times determined the diagnosis skill. 

 

We began the new period of study by adding ISOON image sequences so that more would be 

available to the flare diagnosis development and application algorithms. By acquiring an 

additional 44 image sequences for specific date-active region sub-regions, we expanded our 

available pool of images sequences to 90. In the previous study, we found that the image 

sequences could be partitioned by flaring level indicator (FLI) according to the temporal pattern 

of the leading eigenvectors and the corresponding x-ray flux rise associated with any flare 

present in the sequence.  Norquist and Balasubramaniam [1] predetermined the FLI for each 

ISOON sequence based on a subjective assessment of its Hα eigenvector patterns and the 

associated x-ray flux peak value. We continued that approach to determine the FLI for the new 

sequences added in the present study period. Briefly, the four FLI values were described as 

follows: FLI = 0 for no flare above x-ray background and smoothly varying (sinusoidal) 

eigenvectors; FLI = 1 for weak flares (peak flux in the x-ray decade of the background value) 

with spiked otherwise smoothly varying (sinusoidal) eigenvectors; FLI = 2 for moderate x-ray 

flares (one decade greater than background) and smoothly curved (non-sinusoidal) eigenvectors 

before and after the flare spike; FLI = 3 for strong x-ray flares (two or more decades above 

background) with non-curving eigenvectors before and smoothly curving after sharp spikes. In 

FLI = 1-3, the eigenvector spike occurs at the same time as the sharp rise in the x-ray flux. There 

must be a simultaneous eigenvector spike and a clear x-ray flux rise in order for a non-zero FLI 

category to be assigned to an image sequence. For reference, see Figure 7 of Norquist and 

Balasubramaniam [1] for examples of each FLI category. In Table 1 we list the 90 image 

sequences distributed into three image sequence sets (ISS) that have an approximately equal 

number of each of the FLI categories. In Table 1, Date is given in YYYYMMDD format, AR # 

is NOAA active region number (if assigned to the active region at time of observation), and FLI 

is prescribed flaring level indicator. Combinations of these three ISS served as development and 

application sets in the present study. 
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Table 1. ISOON Hα Image Sequence Sets (ISS) Used In This Study 

 

ISS 1 ISS 2 ISS 3 

Date AR # FLI Date AR # FLI Date AR # FLI 

20021213 10213 1 20021213 10215 1 20021213 10220 1 

20021213 10223 1 20030102 10234 0 20030102 10239 0 

20021213 10224 0 20030117 10254 0 20030117 10255 0 

20021219 10229 3 20030117 10257 0 20030117 10259 0 

20030117 10250 0 20030117 10258 1 20030203 10274 0 

20030117 10256 0 20030203 10272 0 20030206 ----- 1 

20030117 10260 0 20030318 10318 0 20030318 10319 0 

20030203 10276 0 20030331 10321 0 20030331 10324 0 

20030318 10323 0 20030331 10326 1 20030401 10318 1 

20030331 10323 1 20030401 10321 0 20030401 10325 0 

20030331 10325 0 20030401 10323 1 20030509 ----- 1 

20030401 10319 1 20030513 10358 0 20030516 10357 0 

20030401 10326 0 20030522 10362 1 20030528 10365 1 

20030516 10356 1 20030605 10373 0 20030605 10375 0 

20030528 10368 1 20030606 ----- 0 20030606 10377 1 

20030604 10373 0 20030606 10375 1 20030610 10375 0 

20030606 10373 0 20030610 10380 0 20030611 10375 2 

20030609 10375 1 20030611 10375 2 20030611 10377 0 

20030610 10377 0 20030612 10375 1 20030612 10380 0 

20030611 10380 2 20030612 10377 0 20030613 10380 1 

20030611 10381 0 20030613 10377 0 20030616 10380 0 

20030612 10381 0 20030620 10385 0 20030620 10387 0 

20030616 10385 0 20030623 10386 0 20030623 10387 0 

20030620 10386 1 20030623 10397 0 20030624 10386 0 

20030620 10388 0 20030624 10387 1 20031031 10488 1 

20030623 10388 0 20030625 10391 0 20031104 10486 3 

20030624 10390 0 20031029 10486 3 20040105 ----- 1 

20031104 10486 1 20031104 10486 1 20040316 ----- 0 

20041007 ----- 0 20041109 10696 2 20050506 10758 2 

20050513 10759 3 20050909 10808 3 20061206 10930 3 

 

In the balance of this report, we describe several methods involving four-category MVDA that 

used predictor vectors and prescribed predictands derived from Hα intensity and x-ray flux data 

at individual image times of the image sequences in Table 1.  In Section 2, we briefly review the 

best performing version of the flare probability diagnosis development and application 

algorithms from the previous study. In Section 3, we describe modifications to that algorithm 

pair made to attempt to improve discrimination among the flaring categories. In Section 4 we 

relate the results of the evaluation of the two image time flare probability diagnosis methods. In 

Section 5 we describe a technique to diagnose flaring for each image sequence as a whole, and 

present the results of its assessment. In Section 6 we discuss the modification of the whole-
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sequence method and present its results. In Section 7 we relate our preliminary consideration of 

using Doppler velocity data from ISOON as a possible supplement to Hα imagery in diagnosing 

flares. Section 8 ends with a discussion of our conclusions from the study. 

 

2. IMAGE TIME FLARE PROBABILITY DIAGNOSIS METHOD 1 
 

After acquiring the new ISOON Hα image sequences and partitioning them into the ISS as listed 

in Table 1, we tried them out on the legacy flare probability diagnosis development and 

application algorithms from the previous study. Norquist and Balasubramaniam [1] refer to this 

version as the Hα Eigenvector Flare Categorization (HEFC) algorithms. In this report we will 

refer to it as the Image Time Flare Probability Diagnosis Method 1. See Norquist and 

Balasubramaniam [1] for a detailed description of the algorithm.  

 

For our purposes in this report, we summarize the description as follows.  The HEFC (hereafter, 

Method 1) development algorithm used the eigenvalues corresponding to each generated 

eigenvector to determine the number of eigenvectors to use as predictors. We used the number of 

eigenvectors corresponding to the greatest number of eigenvalues over all sequences in the 

development set that assured that 99.9% of the variance was explained in any sequence. This 

resulted in the use of the leading 25-50 eigenvectors depending on the development set used. The 

elements of the set of eigenvectors used were the predictor vector elements at each image time of 

the sequence. 

 

Most of the experimentation with the flare diagnosis algorithms described by Norquist and 

Balasubramaniam [1] was focused on specifying the predictand at each image time. In this report 

we refer to the specified image time predictand as the “observed” flaring category. In the Method 

1 development algorithm, we used the sub-region average Hα intensity of the date-active region 

from which the sequence data was taken to determine the image times of the flare rise. The 

prescribed non-zero flaring level indicator (FLI) for that image sequence was assigned as the 

predictand at those times, which were less than 10 percent of all image times in almost all FLI 1-

3 sequences. At all other image times in the sequence and for all times in FLI 0 (non-flaring) 

image sequences, the predictand was set to zero. As mentioned in Section 1, a spike in the Hα 

eigenvectors coincident with x-ray flux rise assured that the flare had indeed occurred in the sub-

region of the subject date-active region. Since we were using sub-region average Hα intensity in 

the HEFC algorithm, we verified that its rise coincided in time with the x-ray flux rise used with 

the eigenvector patterns to set the FLI. In the development algorithm, we checked the flare peak 

x-ray flux, and maintained zero predictands in the flare rise if it was less than the background 

value computed from the prior day’s x-ray flux time series. Background x-ray flux was 

determined using the NOAA Space Weather Prediction Center “X-ray Bkgd Flux” method (see 

http://www.swpc.noaa.gov/wwire.html). 

 

This process of setting the predictor vector and predictand for each image time was repeated for 

all image sequences in the development set. All such specified predictor vector-predictand pairs 

for all image sequences in the development set were input into the MVDA routine, which was 

Fisher’s Linear Discriminant for Multiple Groups (see Appendix B of Norquist and 

Balasubramaniam [1], or Wilks [3]). Here, the “groups” are the four FLI categories. The MVDA 

routine produced discriminant vectors with the same number of elements as the predictor vectors. 
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For the four-group MVDA, there were three discriminant vectors, and four group-mean vectors 

whose elements were the means of the eigenvector elements over all predictor vectors associated 

with each flare category. The dot product of each discriminant vector with each group mean 

vector determines the component in 3-D discriminant space of the location of the group mean. 

The last step in the Method 1 development algorithm was to apply the discriminant vectors to 

each of the predictor vectors that were used in the MVDA routine. This also “places” the 

corresponding image time in discriminant space. Its distance from each of the four group means 

determines the probability of the four FLI categories, with the closest one being the group with 

the largest probability. The four probabilities sum to one, with each indicating its likelihood of 

occurrence. By comparing these probabilities with the prescribed FLI category, we got a 

preliminary look at how well the scheme was able to discriminate among the flaring categories. 

 

The Method 1 application algorithm ingested the discriminant vectors and group mean vectors 

from the development algorithm. It also input the leading (same number as used in the 

development algorithm) eigenvector elements for each image time of each image sequence of the 

designated application set as the predictor vector elements. In this study period, we used a 

combination of two of the ISS from Table 1 as the development set and the other image sequence 

set as the application set. The discriminant vectors were dotted with each application set 

predictor vector, and the resulting location in discriminant space was compared with the four 

group mean locations to determine the probabilities of the four flaring categories.  

 

3. IMAGE TIME FLARE PROBABILITY DIAGNOSIS METHOD 2 
 

A look at some preliminary results from the Method 1 algorithms (not shown) indicated some 

degree of overlap among the four groups. At many FLI 0 image times in an application sequence, 

one of the non-zero FLI categories was diagnosed with the largest probability. This was often 

due to none of the four categories having a probability exceeding 0.5, leading to an ambiguity in 

the designation of most likely flaring category. We felt that this suggested a need to achieve 

greater separation among the group means in discriminant space to get a more distinctive 

diagnosis of flare category probability. 

 

In seeking greater discrimination among the flaring categories, we experimented with using 

alternative forms of the eigenvectors. We saw that the range of values for a specific eigenvector 

would vary from sequence to sequence. Since we were using multiple image sequences in the 

development algorithm, we sought a more uniform representation of the eigenvector information 

across sequences. To that end, we considered the use of the time rate of change of the 

eigenvectors instead of their actual value at each image time. Since the image cadence is one 

minute for the ISOON Hα images, we decided to examine the use of 1-minute eigenvector 

changes as the predictors. 

 

We then applied a five-point smoother to the time series of each of the nine leading eigenvectors, 

then created a scatter plot of one-minute eigenvector changes against one-minute x-ray flux 

changes for each eigenvector of selected image sequences with FLI categories 0-3. Examples are 

shown in Figure 1 for each of the four FLI categories. 
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Figure 1. X-ray Flux vs. Eigenvector Change for FLI (a) 0, (b) 1, (c) 2, and (d) 3 Sequences 
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Figure 1. (Cont.) 
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From the scatter plots, it is clear that inflections (that is, large one-minute changes) in certain 

eigenvectors were coincident with large rises (that is, positive changes) in x-ray flux. In some 

cases (especially FLI 1) the sign of the large eigenvector changes was significant – in others (FLI 

2,3) both signs were evident in the large changes. From this, we concluded that using one-minute 

changes in the leading eigenvectors as predictors and prescribed FLI predictands assigned during 

x-ray flux (not area-average Hα) rise times might enhance the discrimination among flaring 

categories. 
 

To implement this idea, we made the following changes to the Method 1 development algorithm: 

 Eliminate use of eigenvalues to determine the number of eigenvectors used as predictors; 

 Impose use of a pre-set number of leading eigenvectors – initially eigenvectors 0-9; 

 Change from eigenvector values to one-minute changes of smoothed eigenvectors as 

predictors; 

 Eliminate use of sub-region area-average Hα intensity to indicate times of flare rise; 

 Set prescribed non-zero FLI as predictands at x-ray flare rise times coincident with 

eigenvector inflections; 

 Predictor vector-predictand pair exists at all image times for which the image time one 

minute prior is available. 
 

As with Method 1, the x-ray rise times constituted less than 10 percent of all image times in 

almost all FLI 1-3 sequences. In the modified application algorithm, we also used as the 

predictor vector elements the pre-set number of leading eigenvectors at all image times in each 

application sequence in which the one-minute change of the smoothed eigenvectors was 

available. The application algorithm computed the dot product of the discriminant vectors 

derived in the development algorithm and each predictor vector, resulting in the location of the 

discriminant function value for each image time in discriminant space. It then computed the 

application probability of each flare category its distance from each of the four group mean 

locations in discriminant space. We designated the resulting development and application 

algorithms the Image Time Flare Probability Diagnosis Method 2. 

 

4. ASSESSMENT OF FLARE PROBABILITY DIAGNOSIS METHODS 1, 2 
 

Both Method 1 and 2 produce a diagnosis of the probability of the four flare categories at each 

image time of an image sequence. In this section we describe statistical metrics used to assess the 

performance of the two individual image time flare probability diagnosis methods, and present 

results from this assessment. 
 

We computed a probability-weighted diagnosed flaring category Cp given by 

 

 [1] 

 

at each image time i, where in our study there are G = 4 groups g = 0, 1, 2, and 3, and pg is the 

diagnosed group probability. From Cp and Co, the observed category at each image time i, 

several statistical metrics were determined for the image sequence. They are Brier Score 
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Bias 

 

[3] 

 

and Diagnosis Uncertainty 

 

[4] 

 

In our study, N represents the number of image times in the respective image sequence. In 

addition, frequency distribution fit (FDF) defined by 

 

[5] 

 

 

was computed over all image times in all application set sequences (Na), where mg is the number 

of image times in which group g was the most likely category (greatest diagnosed probability), 

and ng is the number of observed group g image times. 

 

We executed the development algorithm of Image Time Flare Probability Diagnosis Methods 1 

and 2 using successive pairs of the three ISS listed in Table 1. We then applied the resulting 

discriminant vectors to the third (independent) image sequence set in the corresponding 

application algorithm. This yielded separate values of the statistical metrics for each of the three 

application sets by image sequence and overall. In the following illustrations of the results, we 

show the results from Methods 1 and 2 in direct comparison for each application set. 

 

In Figure 2, we show Brier Score results from the two methods for all three application sets. In 

the plots, “D/A” stands for “Diagnosis/Application.” We consider Brier Score to be the best 

single indicator of the performance of the flare category probability diagnosis techniques. It 

measures the mean squared difference between the probability-weighted diagnosed flare 

category (PWDFC) and the observed flare category. A perfect diagnosis of the flare category at 

all image times would yield a Brier Score of 0. Brier Score increases as the average difference 

between PWDFC and observed category over the image times in a sequence gets larger, with a 

maximum (worst) value of 1. Because all four categories generally have a non-zero probability, 

the PWDFC tend to stay between 0.5 and 2.5 so that we would never expect either a perfect or 

worst Brier Score. 

 

In the results shown in Figure 2, the D/A Method 1 appears to perform somewhat better for most 

image sequences in Application Sets 1 and 3, but Method 2 is clearly better in Application Set 2. 

The two methods most closely correspond to each other in Application Set 2. Interestingly, the 

largest Brier Score values were for the image sequences from 20030117 in all three application 

sets. Norquist and Balasubramaniam [1] found that Method 1 and earlier flare category 

probability diagnosis algorithms tended to perform worst on prescribed FLI 0 sequences. They 

diagnosed the largest probability for a non-zero FLI category in an excessive number of image  
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Figure 2. Brier Score of Methods 1 and 2 for Application Sets (1), (2) and (3) 
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times. In this study, we did not find that to be true – that is, poor Brier Scores were not exclusive 

to the FLI 0 sequences, and many FLI 0 sequences had quite good Brier Scores. For example, 

Application Set 1 image sequences 20030117_10250 and 20030604_10373 had Brier Scores of 

0.19 and 0.10 respectively from Method 1, yet they were both prescribed FLI 0 sequences. This 

was also true of the FLI 0 sequences 20030605_10375 (BS of 0.20) and 20030610_10375 (BS of 

0.06) from Method 2 in Application Set 3. Similarly, there was no definite association between 

the Brier Score and percentage of non-zero FLI image times in the flaring sequences. Brier 

Scores seemed to be insensitive to the number of observed flaring times in the image sequence. 

 

Figure 3 shows the Bias from the two development/application methods. It shows very nearly the 

same patterns as Figure 2 for Brier Score, primarily because the diagnosis methods 

systematically diagnose a PWDFC larger than the observed category at the image times. If there 

were offsetting diagnoses of positive and negative PWDFC-minus-observed FLI, the Bias would 

have a different pattern from sequence to sequence than the Brier Score. However, we know that 

can’t happen because as was mentioned earlier, the PWDFC generally ranges between 0.5 and 

2.5, and the observed FLI (OFLI) at image times are dominated by zeros. Therefore, there is an 

inherent positive value to the Bias metric. To get an idea of the lower limit of Bias for a 

prescribed FLI 0 image sequence, we start by noting that an image time probability diagnosis of 

0.85, 0.05, 0.05, and 0.05 for FLI 0-3 respectively corresponds to PWDFC = 0.3. If this 

diagnosis were made at all image times in the sequence, a Bias of 0.10 would result. This would 

seem to be an approximate lower limit to the Bias for image sequences. More realistically, at 

least for Methods 1 and 2, a diagnosis of 0.70, 0.15, 0.10, and 0.05 would likely be the best that 

could be achieved, giving a PWDFC = 0.5. If repeated at all image times in the sequence, a Bias 

of about 0.17 would result, considered a “best” Bias for a prescribed FLI 0 sequence processed 

by these methods. 

 

In sequences where the number of OFLI 0 was grossly under-represented by the probability 

diagnosis (that is, where the diagnosed most likely category, DFLI, was > 0 at most image 

times), an excessive number of false alarms were indicated. For example, the FLI 0 image 

sequence 20030117_10257 with a bias of 0.51 had only 70 of 216 image times with DFLI 0 in 

Method 1. The other image times had DFLI of 1-3, which of course would be considered false 

alarms. By contrast, in Method 2 the FLI 0 sequence 20030620_10385 had a bias of 0.19 with 

306 of 393 image times with DFLI 0, resulting in a much smaller false alarm rate. 

 

The disparity of flare category probability diagnosis performance among ISOON image 

sequence begs the question “why are some sequences diagnosed so much better than others?” 

While it is outside the scope of this report to investigate this matter thoroughly, we can at least 

look at a couple of sequences with contrasting performance to suggest an answer. In Figure 4(a) 

we show the leading nine eigenvectors for the FLI 0 image sequence 20030117_10250, while in 

Figure 4(b) we show the PWDFC at all image times resulting from the Method 2 probability 

diagnosis (Bias = 0.48) based on those eigenvectors. We show the same pair of plots for the FLI 

0 sequence 20030620_10385 in Figures 5(a) and (b) respectively using the Method 2 probability 

diagnosis (Bias = 0.19). Figure 4(a) for FLI 0 sequence 20030117_10250 depicts the smooth, 

sinusoidal pattern commonly associated with FLI 0 sequences. However, the resulting Method 2 

PWDFC in Figure 4(b) hovers around 1.5 suggesting that the discriminant vectors for 

development set 2_3 in this case are placing the discriminant functions evaluated from those 
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Figure 3. Same as in Figure 2 Except for Bias 
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Figure 4. Sequence 20030117_10250 (a) 1st 9 Eigenvectors, (b) Method 2 PWDFC vs OFLI 
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Figure 5. Same as in Figure 4 Except for Image Sequence 20030620_10385 
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eigenvectors closer to groups 1 and 2 (weak to moderate flaring) than to group 0 (non-flaring). 

The leading eigenvectors shown in Figure 5(a) for FLI 0 sequence 20030620_10385 are 

strikingly different than in Figure 4(a) – flat with occasional spikes, with only a hint of 

sinusoidal variation in eigenvectors 6 and 8. Figure 5(b) shows that the resulting probability 

diagnosis clearly favors group 0, and in fact resulting in quite high probability of the non-flaring 

category (not shown) at most of the image times. We can’t draw any hard and fast conclusions 

from two cases, but there does seem to be a great deal of sensitivity in the diagnosis performance 

to the patterns of the eigenvectors. This pair of cases highlights the great variations of these 

patterns associated with a single flaring category. As such, it suggests that the limited 

discrimination among the flaring categories may be due to a lack of distinction among the 

eigenvector patterns of the image sequences of a particular prescribed FLI category when used in 

development. This would increase the in-group scatter in discriminant space and lead to less 

distinction among the groups. 

 

We also show some results for FLI 1-3 image sequences from image time flare category 

diagnosis Method 2 in Figures 6-9. The leading nine smoothed eigenvectors (Figure 6(a)) and the 

diagnosed PWDFC vs. OFLI (Figure 6(b)) are shown for the image sequence 20030522_10362. 

The diagnosis yielded a Brier Score of 0.082 for this FLI 1 sequence. A C-class flare occurred 

between 20 and 22 UTC that is evident as inflections in several of the leading eigenvectors. The 

plot of PWDFC in Figure 6(b) shows quite a bit of variation during the sequence, but tends to 

remain around 0.5 except for several jumps to 1.5 or so. The same plots are shown for another 

FLI 1 sequence, 20030528_10368, in Figure 7. This case had C-class flares between 14 and 15 

UTC and between 20 and 21 UTC as shown in Figure 7(b). The corresponding inflections are 

evident in some of the leading eigenvectors in Figure 7(a). However, in this sequence the 

diagnosis of PWDFC is greater, staying above 1 at most of the image times. As a result, the Brier 

Score for this sequence was not as good, 0.175. In Figures 8 and 9, we show leading 

eigenvectors and Method 2 PWDFC vs. OFLI for the FLI 2 sequence 20050506_10758 (Brier 

Score 0.052) and the FLI 3 sequence 20050909_10808 (Brier Score 0.071). Both of these 

diagnoses represent the flare well. This is likely due to the prominent inflections in the leading 

eigenvectors and the characteristic eigenvector patterns representing these two FLI categories.   

 

Figure 10 depicts the Diagnosis Uncertainty (DU) over the image sequences of the three 

application sets. DU is a measure of the collective probabilities of flaring categories not 

identified with the largest probability. It is the complement to the degree of certainty of the most 

probable category. It does not directly relate to PWDFC accuracy, like Brier Score. However, 

especially for Method 2 we see a strong similarity in the sequence-to-sequence variation of Brier 

Score (Figure 2) and DU (Figure 10). On the other hand, a difference between the displays of 

Brier Score and DU is that the distinction between Methods 1 and 2 in Application Set 3 for 

Brier Score is greater for DU. It appears that greater certainty of the most probable category is 

generally associated with category diagnosis accuracy. The levels of DU for both methods in all 

put perhaps Application Set 2 are disappointing. A good diagnosis would have a higher than 50 

percent probability of the most probable category. We see in Figure 10 that in many sequences 

the average DU approaches or exceeds 50 percent. In only 6 of the 30 sequences in Application 

Set 2 does the DU get below 30 percent, or a most likely probability of 70 percent that we 

suggested earlier might be the best we could do for PWDFC in these methods across a sequence. 
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Figure 6. Same as in Figure 4 Except for Image Sequence 20030522_10362 
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Figure 7. Same as in Figure 4 Except for Image Sequence 20030528_10368 
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Figure 8. Same as in Figure 4 Except for Image Sequence 20050506_10758 
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Figure 9. Same as in Figure 4 Except for Image Sequence 20050909_10808 
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Figure 10. Same as in Figure 2 Except for Diagnosis Uncertainty 
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In addition to the statistical metrics computed for each image sequence as shown in Figures 2, 3 

and 10, we present their values determined from all image times over all sequences in each 

application set in Table 2.  

 

Table 2. Methods 1, 2 Statistical Metrics for All Image Times in Each Application Set 

 Application Set 1 Application Set 2 Application Set 3 

Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

Brier Score 0.12 0.15 0.15 0.10 0.10 0.13 

Bias 0.31 0.35 0.35 0.27 0.28 0.31 

DU 0.44 0.48 0.45 0.39 0.45 0.43 

FDF 0.89 0.92 0.87 0.56 0.66 0.82 

 

Method 2 performed the best overall on Application Set 2 (Development Set 1_3) followed by 

Method 1 on Application Set 3 (Development Set 1_2). Both methods varied in their diagnosis 

skill among the application sets, with Method 1 slightly better than Method 2 on Application Sets 

1 and 3 and Method 2 somewhat better than Method 1 on Application Set 2. Based on these 

overall results, there is not a strong argument for one method over the other in flare category 

diagnosis performance. We would only recommend Method 2 in that it is simpler to implement, 

does not rely on area-average Hα intensity, and achieved the best overall performance. 

 

5. WHOLE SEQUENCE ALGORITHM DEVELOPMENT/APPLICATION  
 

In an attempt to improve the discrimination among flaring categories, we next took a radically 

different approach. Instead of trying to diagnose flare category for each individual image time as 

done to this point, we arrived at the idea of attempting to diagnose flare category for each 

sequence as a whole. The idea came from the observation that the leading eigenvectors did seem 

to fall into four distinct patterns as described above, with each pattern associated with a 

corresponding flaring level indicator (FLI). We decided to represent the distinct pattern 

numerically in the MVDA predictor vector elements for each sequence, and assign the FLI for 

that sequence as the predictand category. The representation was in the form of a frequency 

distribution of the 1-minute changes for each of the leading eigenvectors. 

 

The frequency distributions were constructed for all 60 image sequences in each development set 

combination of ISS pairs. The Nb 1-minute change bins were established separately for each of 

Ne leading eigenvectors, resulting in Ne × Nb fractional frequency of occurrence values that were 

the predictors for each sequence. The predictand was the prescribed FLI value based on the 

eigenvector patterns and x-ray peak flux as done in the earlier methods. To set the size bins for 

each eigenvector, we sorted all of the 1-minute changes over all 60 sequences from largest 

negative to largest positive values. We then found the first and 99
th

 percentile values, and used 

them to set outer bounds for the range of values. The outer bounds were set to the next integer 

value less than the first and greater than the 99
th

 in the same power of 10. For example, if the 

first and 99
th

 percentile values were -0.00467 and 0.00631 respectively, we set the outer bounds 

at -0.005 and 0.007 respectively. We then divided this range into Nb equally sized bins. For each 

sequence, we counted the number of 1-minute changes that fell into each size bin corresponding 

to each of the Ne eigenvectors, and divided each count by the total number of 1-minute changes 
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in the sequence. The resulting frequency of occurrence values for each of the leading Ne 

eigenvectors made up the predictor vector elements for that sequence. In the same way, we 

computed the frequency of occurrence for the Nb size bins for each eigenvector over all 60 

sequences, separately by FLI category. The latter accounting was done simply to assess the 

overall differences in frequency distribution of the 1-minute changes by FLI category.  

 

The 60 predictor vector – predictand sets were entered into the MVDA development algorithm to 

determine the three discriminant vectors of Ne × Nb elements. These were then applied back to 

the 60 predictor vectors used to develop them, just to test the MVDA algorithm process. The 

discriminant space position of the resulting discriminant function values for each FLI category 

was compared to the position of the four group means for each sequence, and the probability of 

each category was diagnosed. The result was perfect discrimination – the probability of the 

original FLI predictand value category was one, and the probabilities of the other three 

categories were zero. This is because each predictor vector to which the discriminant vector was 

applied was a predictor vector used to develop the discriminant vector, so the development and 

application steps were validated. We settled on the use of Ne = 8 leading eigenvectors and Nb = 

10 size bins, resulting in 80 predictor elements used in the MVDA development algorithm. 

 

We then applied the discriminant vectors derived from a particular development set of 60 image 

sequences to an application set of 30 independent image sequences. The three separate sets of 30 

image sequences used in this report were listed in Table 1. For example, we derived discriminant 

vectors from development set 1_2, made up of 60 image sequence combined from sets 1 and 2, 

and applied them to application set 3. In the application algorithm, the predictor vectors are 

formed in the same way as described above, using the Ne = 8 leading eigenvectors and Nb = 10 

size bins to develop the frequency of occurrence values for each sequence in the application set. 

The discriminant vectors from the development set are then applied to the predictor vector of 

each sequence in the application set. The position in discriminant space from the resulting 

discriminant function values is compared with the position of the development set discriminant 

function means of each category. The distance from each one determines the probability of each 

flare category. The closer the application diagnosis position is to one of the group means’ 

position, the higher the probability and the lower the diagnosis uncertainty. However, if there is 

not a lot of distinction among the development set discriminant function means, there is a greater 

ambiguity in the application diagnosis, and the diagnosis uncertainty is greater. Thus, it is the 

goal of the multivariate discriminant analysis to maximize the separation among the group 

means, and to minimize the scatter of the development set discriminant function values within 

each group or category.  The procedure will succeed or fail depending on these factors, so the 

trick is to design the predictors and predictands (that is, the categories) to optimize these factors. 

 

We first assess the performance of the whole sequence development and application algorithms 

by looking at the probability-weighted diagnosis of flare category (PWDFC). Unlike the earlier 

methods that diagnose the probability of each FLI category and thus the PWDFC at each image 

time, here we determine PWDFC from the four category probabilities diagnosed for the entire 

image sequence. In Figure 11, we show the diagnosed PWDFC from the whole sequence method 

for all sequences in each of the three application sets. For reference, we also show the observed 

FLI (OFLI) for each sequence in each of the application sets. We see that the majority of the  
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Figure 11. Whole Sequence Method PWDFC vs. OFLI for Application Sets (1), (2), (3) 
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sequences have diagnosed PWDFC between 1 and 2, with occasional diagnoses above or below 

this range. By contrast, OFLI flare categories 0 and 1 predominate in the sequences in all three 

application sets, with only a small minority of sequences having OFLI 2 or 3. Average PWDFC-

OFLI difference for the three application sets were 0.8, 0.9, and 0.9 respectively. There does not 

appear to be any perceptible correspondence between the sequence-to-sequence variation of 

PWDFC and OFLI. For the 11 sequences with OFLI 2 or 3, only one (20041109_10696 in 

Application Set 2) had a corresponding rise in flare category to a comparable value. 

 

We list the performance metrics results for the whole sequence development and application 

algorithms in Table 3. In this case, N  = 30, the number of image sequences in each application 

set. The Brier Score and Bias are computed from the values shown in the PWDFC vs. OFLI plots 

in Figure 11. Recall that Brier Score and Bias are scaled to the range 0 to 1, so that that flare 

category bias is three times the Bias metrics in Table 3. The metrics indicate a consistency 

among the three separate application sets, implying the same for the development sets from 

which the application discriminant vectors were derived. Since the metrics here are computed 

over 30 sequences for each application set rather than thousands of individual image times as in 

the previous sections of this report, we can’t make a direct comparison with the metrics values in 

Table 2. It is clear from Table 3 metrics that the whole sequence development/application 

algorithms produce a consistent positive flare category bias. This is indicated by both the Bias 

and the comparison of percentage of sequences with diagnosed FLI 0 (% DFLI 0) and observed 

FLI 0 (% OFLI 0) entries in Table 3. The diagnosed flare categories DFLI are designated by the 

category with the largest diagnosed probability for each sequence. Table 3 values indicate that 

the number of FLI 0 sequences is greatly under-represented in the diagnoses, meaning that there 

are an excessive number of flare false alarms. Diagnosis uncertainty values in Table 3, each of 

which is the individual sequence diagnosis uncertainty averaged over all sequences in the 

respective application set, show that the highest diagnosed probability is on average less than 

0.5. This means that there is less of a chance that the diagnosed most-likely category is correct 

than that it is incorrect.  Finally, the large frequency distribution fit (FDF) values show that the 

diagnosed FLI categories for the sequences poorly represented the actual observed FLI frequency 

distribution. Improperly diagnosed FLI 0 sequences contributed greatly to this shortcoming. 

 

Table 3. Performance Metrics for the Whole Sequence Development/Application Process 

 

Application Set Brier Score Bias Diagnosis Uncertainty FDF % DFLI 0 % OFLI 0 

1 0.16 0.27 0.56 1.00 16.67 60.00 

2 0.17 0.29 0.54 0.93 13.33 56.67 

3 0.16 0.29 0.62 0.80 30.00 56.67 

 

To gain a better understanding of how the frequency distribution of 1-minute eigenvector 

changes may have affected the diagnosis of FLI, we show the frequency distribution of the eight 

leading eigenvectors derived from the image sequences of development set 1_2 in Figure 12. The 

frequency distributions for the eigenvectors are shown separately for each FLI. Keep in mind 

that the size bins depend only on eigenvector and not on FLI, so they are the same in all FLI 

categories for a given eigenvector. We can immediately see a similarity between FLI 0 and 1,  
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Figure 12. Whole Sequence Method Frequency Distribution for Development Set 1_2 
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Figure 12. (Cont.) 
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and between 2 and 3. In FLI 0 and 1, the two smallest size bins have frequencies of occurrence 

of less than 0.5 for all eigenvectors, and 0.05 – 0.15 for the next larger size bins on either size of 

zero. By contrast, in FLI 2 and 3 the frequency of occurrence extends well beyond 0.5 for some 

eigenvectors, and the two smallest size bins are much less symmetric about zero than in FLI 0 

and 1. The larger size bins have smaller frequencies of occurrence for all eigenvectors in FLI 2 

and 3, particularly bin -3, bin -2, bin 2 and bin 3. Because these frequency distributions are the 

basis for the discriminant vectors derived by the MVDA algorithm, we would expect a greater 

separation between FLI 0-1 and FLI 2-3 than we would between 0 and 1 and between 2 and 3. 

 

When we diagnosed FLI for the image sequences of application set 3, we applied the derived 

discriminate vectors from development set 1_2 to the frequency distributions of the 1-minute 

eigenvector changes from each application image sequence. The frequency distributions from 

four selected sequences of application set 3 are shown in Figure 13. The chosen images 

sequences were: 20030203_10274 (OFLI 0), 20030528_10365 (OFLI 1), 20050506_10758 

(OFLI 2), and 20061206_10930 (OFLI 3). The application of the discriminate vector to these 

frequency distributions of the 1-minute changes of eight leading eigenvectors yields a 

discriminant function value in discriminant space. A comparison of its position with respect to 

means of the four FLI groups determines the probability of each group. In the four charts of 

Figure 13, we indicate the diagnosed FLI (DFLI) and the observed FLI (OFLI) for the four 

selected sequences whose frequency distributions are displayed. We would expect that the FLI 

category of the development set having the 1-minute change eigenvector frequency distributions 

most similar to that of the particular application sequence would have been the one diagnosed for 

that sequence. We do see the greater frequencies of occurrence concentrated in the two smallest 

size bins in the OFLI 2 and 3 application sequences as expected. The fact that the OFLI 0 and 1 

application sequences have substantial frequencies of occurrence in bin -2 and 2 unlike the OFLI 

2 and 3 sequences should have placed these sequences closer to FLI 0 and 1 in the diagnosis. 

However, this was clearly not the case – both were diagnosed in discriminant space as lying 

closest to the group 3 mean, but not by much. In fact, the probability of FLI 3 was only 0.34 and 

0.33 respectively, indicating a diagnosis uncertainty of 0.66 and 0.67. For the other two selected 

application sequences with DFLI 0 and 3 and OFLI 2 and 3, their probability of the DFLI 

categories were 0.29 and 0.53, or diagnosis uncertainty of 0.71 and 0.47. Clearly the level of 

discrimination among the FLI categories is low, and there is excessive ambiguity in the FLI 

classification of any application sequence. 
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Figure 13. Same as Figure 12 Except for Four Image Sequences of Application Set 3 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

bin -5 bin -4 bin -3 bin -2 bin -1 bin  1 bin  2 bin  3 bin  4 bin 5

Ev 0
Ev 1
Ev 2
Ev 3
Ev 4
Ev 5
Ev 6
Ev 7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

bin -5 bin -4 bin -3 bin -2 bin -1 bin  1 bin  2 bin  3 bin  4 bin 5

Ev 0
Ev 1
Ev 2
Ev 3
Ev 4
Ev 5
Ev 6
Ev 7

DFLI = 3, OFLI = 0 

DFLI = 3, OFLI = 1 



28 
Approved for public release; distribution is unlimited. 

 

 

 
 

Figure 13. (Cont.) 
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There are two major reasons why the discrimination is lacking in this approach to classification 

of image sequences by FLI. First, there is too much similarity among the 1-minute eigenvector 

change frequency distributions partitioned by FLI as shown in Figure 12. The discriminant 

functions of the FLI group means lie too close together in discriminant space to indicate a clear 

distinction among them. The other major reason is that the 1-minute eigenvector change 

frequency distribution of any given application sequence is too dissimilar to any of the frequency 

distributions by FLI of the development sequences. Both of these possibilities suggest there is 

perhaps too much variation in the eigenvector patterns among the sequences of a particular FLI 

category. This precludes a distinct frequency distribution derived from the development 

sequences for each FLI category, and no strong resemblance of an application sequence 

frequency distribution to any of the FLI categories’ frequency distributions. 

 

6. PRE-FLARE ALGORITHM DEVELOPMENT/APPLICATION 
 

In looking again at the eigenvector patterns by FLI group as exemplified by the selected image 

sequences in Figure 6-9, we see that the time period before the flare exhibits the greatest 

differences. After the flare, there are large oscillations in FLI 1-3 that could be confused with the 

sinusoidal swings present in FLI 0 (see, for example, Figure 4). We thought that by restricting 

the development of the discriminant vectors to just the pre-flare 1-minute eigenvector changes in 

the sequences with OFLI 1-3, we might be able to enhance the discrimination among the FLI 

groups. That is, we may get greater separation among the means of the discriminant functions of 

the four FLI groups. We revised the development algorithm to incorporate the method used in 

the Hα eigenvector – x-ray flux algorithm that determined the start time of the x-ray flux rise 

associated with the prescribed flare in each OFLI 1-3 sequence. We then used only the 1-minute 

eigenvector changes from the sequence start time up to that flare rise start time to determine the 

frequency distributions. Any sequence that had fewer than 100 1-minute change times before 

flare rise start was not allowed to contribute to the frequency distributions, and thus was not 

involved in determining the discriminant vectors in the MVDA algorithm. For OFLI 0 

sequences, we continued to use all of the 1-minute eigenvector changes for the entire sequence in 

the frequency distributions. Therefore, the frequency distributions determined over all 

development sequences in a given development set will be the same as before for FLI 0, but 

should be more distinct for FLI 1-3. 

 

In Figure 14, we show the frequency distributions determined from the altered development 

algorithm for the development set 1_2.  These can be compared with their counterparts from the 

whole sequence algorithm in Figure 12, keeping in mind changes in the size bin boundaries for 

some of the eigenvectors. The development data set had the following numbers of 1-minute 

changes that went into the frequency distributions by FLI category: for the original whole 

sequence algorithm: 16315, 8669, 1329, 1796 for FLI 0-3; for the pre-flare algorithm: 16315, 

2533, 624, 982 for FLI 0-3. Of the 60 image sequences in development set 1_2, 54 met the 

minimum 100 1-minute change time requirement to participate in the algorithm. Looking at the 

new frequency distributions in Figure 14, we see that as with the whole sequence algorithm, the 

FLI 0 and 1 frequency distributions are quite similar. Both the FLI 2 and 3 are more different 

from the FLI 0 and 1 frequency distributions than they were for the whole sequence algorithm.  



30 
Approved for public release; distribution is unlimited. 

 

 

 
 

Figure 14. Pre-Flare Method Frequency Distribution for Development Set 1_2 
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Figure 14. (Cont.) 
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More of the frequency of occurrence is concentrated in the bin -1 and 1 bins, and some of the 

outlying bins have very little representation by any of the eigenvectors. The distributions for FLI 

2 and 3 are different in that there is more variation with eigenvector in the two central bins in the 

latter. This was also true for FLI 2 and 3 in the whole sequence algorithm. It is hard to determine 

to what extent we achieved our goal of greater distinction among the frequency distributions of 

the four FLI categories at this point – only that it seems we achieved a greater FLI 0-1 and FLI 2-

3 difference. 

 

We then applied the discriminant vectors from the pre-flare development algorithm to the 

respective application sets. We maintained the restriction of using only the pre-flare image times 

to construct the frequency distribution of 1-minute eigenvector changes for each OFLI 1-3 

application sequence. For the OFLI 0 sequences, we used the image times before the hour 

nearest the mid-time of the sequence period.  We diagnosed FLI category probabilities only for 

the application sequences that had at least 180 image times resulting from these restrictions. This 

eliminated nine of the 30 application sequences from being diagnosed for FLI category 

probability. We selected the same four sequences from application set 3 to show the frequency 

distribution of 1-minute eigenvector change frequency distributions in Figure 15. For 

perspective, the number of 1-minute changes making up the frequency distributions of the four 

sequences were 441, 643, 444, 484 for the OFLI 0-3 sequences respectively for the whole 

sequence algorithm (whose frequency distributions are shown in Figure 13), and 244, 286, 193, 

199 for the OFLI 0-3 sequences respectively for the pre-flare algorithm (whose frequency 

distributions are shown in Figure 15). We gained the perceived advantage of greater distinction 

by FLI category in the development set frequency distributions, but suffered the disadvantage of 

fewer 1-minute change values going into the frequency distributions in both development and 

application. Frankly, the OFLI 0 application sequence frequency distribution in Figure 15 is very 

irregular and does not resemble any of the four frequency distributions of the development 

sequences as shown in Figure 14. Eigenvectors 1-3 have smaller frequencies of occurrence in 

bins -1 and 1 for the OFLI 1 application sequence (Figure 15) than for the OFLI 1 development 

sequences (Figure 14). Even so, the collective frequency distributions overall clearly resemble 

FLI 1 more than FLI 3 (see Figure 14), yet the latter was indicated as most likely. The OFLI 2 

sequence (Figure 15) is a complete mystery to us – if anything, it looks more like the FLI 3 

frequency distribution of the development sequences, certainly not FLI 1 which was what was 

diagnosed as most likely. Finally, it is more understandable that the OFLI 3 application sequence 

could be confused with the FLI 2 development sequences’ frequency distributions, since they are 

similar to the FLI 3 frequency distributions. 
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Figure 15. Same as Figure 14 Except for Four Image Sequences of Application Set 3 
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Figure 15. (Cont.) 
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It appears that in employing the pre-flare version of the development and application algorithms, 

we suffer from a smaller pool of 1-minute eigenvector changes (minimum of 180) from which to 

construct the frequency distributions for each application sequence. Therefore, they are less 

representative of the frequency distributions created from the 1-minute eigenvector changes of 

the development sets’ sequences. We did not seem to profit from focusing on just the pre-flare 

eigenvector information, even though it was more distinct by flare category than using 1-minute 

eigenvector changes from the entire sequences. 

 

In Figure 16 we show the probability-weighted diagnosed flaring categories for those sequences 

for which the minimum 180 image times was satisfied vs. the OFLI. In comparing these plots 

with those from the whole sequence approach in Figure 11, we see that again most of the 

PWDFC values are in the flaring category 1-2 domain. The pre-flare algorithms did not improve 

the ability to properly diagnose the FLI 0 (non-flaring) sequences. Also as with the whole 

sequence method, there is no obvious association of sequence-to-sequence variation between 

PWDFC and OFLI. We list the performance metrics results for the pre-flare development and 

application algorithms in Table 4. Numbers in parentheses in the “Application Set” column 

denote the number of application set sequences (out of 30) that had at least 180 image times to 

construct the frequency distributions. The results for application sets 1 and 3 are actually worse 

than for the whole sequence method as shown in Table 3, while application set 2 has values that 

are competitive. The level of positive bias, serious lack of FLI 0 diagnoses, and the large FDF in 

application sets 1 and 3 suggest that the liability of having fewer image times to construct the 

frequency distributions overcame the advantage of greater category distinction in the use of just 

pre-flare image times. 
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Figure 16. Pre-Flare Method PWDFC vs. OFLI for Application Sets (1), (2), (3) 
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Table 4. Performance Metrics for the Pre-Flare Development/Application Process 
 

Application Set Brier Score Bias Diagnosis Uncertainty FDF % DFLI 0 % OFLI 0 

1 (15) 0.22 0.41 0.54 1.73 0.00 86.67 

2 (21) 0.17 0.24 0.59 0.29 57.14 66.67 

3 (21) 0.21 0.28 0.56 1.24 4.76 66.67 

 

7. ISOON DOPPLER VELOCITY AS FLARE PREDICTORS 
 

At the end of the current study period, we considered the use of Doppler velocity signal in the 

ISOON image pixels as a possible way to augment the flare indicator information from the Hα 

images. At one-minute intervals, the plasma speed in the chromosphere toward (away from) the 

viewer is represented by blue (red) shift in the wavelength of received light. The degree of shift 

from the center line wavelength indicates the speed, which we refer to as the Doppler velocity. 

We processed one-minute interval Doppler velocity in each ISOON image pixel over the same 

sub-regions of solar active regions processed for ISOON Hα. Processing included extracting the 

data in the sub-regions from the whole disk image. After extraction, the images were normalized, 

spatially oriented and aligned. We then applied principal component analysis (PCA, e.g., see 

Wilks [3]) to each of the sub-region sequences of one-minute interval Doppler velocity grids. In 

this way, the eigenvectors and eigenvalues were derived in a manner directly analogous to the 

processing conducted on the one-minute interval Hα image sequences. 

 

In Figures 17-20, we show the nine leading eigenvectors and the cumulative explained variance 

as derived from all of the eigenvalues for four image sequences. These are the same sequences 

for which we showed the leading Hα eigenvectors in Figures 4, 6, 8, and 9 respectively. A five-

point smoother has been applied to the eigenvectors in both sets of figures. Note the difference in 

the time span of the data between the Hα and Doppler velocity figures. 

 

In comparing the leading Hα (Figure 4(a)) and Doppler velocity (Figure 17(a)) eigenvectors from 

FLI 0 image sequence 20030117_10250, we see a pervasive sinusoidal pattern in the former 

which only becomes apparent with eigenvector 2 and higher in the latter. With the imposed 

smoother acting on both sets, it is clear that there is much more high frequency variation in the 

Doppler velocity eigenvectors than for the Hα eigenvectors. This may also be reflected in the 

explained cumulative variance shown for the Doppler velocity in Figure 17(b). While we found 

that 99.9% of the explained variance was achieved consistently by about the first 50 Hα 

eigenvectors and often many fewer than that, here we see that for this sequence it is only attained 

at the highest order eigenvectors. The curving Hα eigenvector patterns of Figure 6(a) contrast 

with the flat Doppler velocity eigenvectors shown in Figure 18(a) for the FLI 1 sequence 

20030522_10362. With the plentiful vertical spikes in the Doppler velocity eigenvector curves it 

is difficult to associate any particular inflection with the obvious flare inflection between 20 and 

22 UTC in the Hα eigenvectors. Comparing Hα eigenvectors in Figure 8(a) with Doppler 

velocity eigenvectors in Figure 19(a) for the FLI 2 sequence 20050506_10758 reveals an 

extremely different signature. The Hα eigenvectors show the classic FLI 2 gently curving pre-

flare shape with the deep drop and rise associated with the flare. The Doppler velocity 

eigenvectors display no obvious sign of the flare occurring between 16 and 18 UTC, and in fact 

their sinusoidal patterns are similar to those of the FLI 0 Hα eigenvectors. Even more dramatic is  
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Figure 17. 20030117_10250 Doppler Velocity (a) 1st 9 Eigenvectors, (b) Explained Variance 

(a) 

(b) 
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Figure 18. Same as in Figure 17 Except for 20030522_10362 

(a) 

(b) 
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Figure 19. Same as in Figure 17 Except for 20050506_10758 

(a) 

(b) 
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Figure 20. Same as in Figure 17 Except for 20050909_10808 

(a) 

(b) 
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the slow rise of cumulative explained variance as shown in Figure 19(b). About 300 Doppler 

velocity eigenvectors are required to represent 95% of the variance. Finally, in comparing the Hα 

and Doppler velocity eigenvectors for FLI 3 sequence 20050909_10808 in Figures 9(a) and 

20(a) respectively, we see a similar relationship between the patterns. The very clear signature of 

the flare in the Hα eigenvectors is largely absent in the Doppler velocity eigenvectors, though we 

do see a large rise in eigenvector 6 at about the expected rise time of the flare. In this case we see 

about 95% of the variance explained by the first 200 eigenvectors.  

 

It appears from this admittedly limited number of examples that more of the temporal variation 

in the Doppler velocity is carried at much higher order eigenvectors than for Hα. This seems to 

suggest that the Doppler velocity is a more spatially and temporally variant, or noisier, field than 

the Hα imagery. We found in this study that the variation in eigenvector patterns among image 

sequences of a particular FLI category limit the ability of the MVDA flare probability diagnosis 

technique. We would surmise that the even more variant Doppler velocity would not benefit the 

process. In addition, it appears that many more eigenvectors would be required to capture enough 

of the explained variance to fully represent the physical phenomenon. It may be that the Doppler 

velocity may have information to contribute to flare diagnosis and maybe even prediction. 

However, investigating this potential benefit would require another project on the scale of the 

present one conducted on Hα imagery. It is clear from this limited analysis that Doppler velocity 

cannot suitably augment Hα imagery in the flare diagnosis techniques developed and used in this 

study. 

 

8. SUMMARY AND CONCLUSIONS 
 

The current study period was a sequel to the original study of the diagnosis of flare probability 

that began in mid-2009. The focus of the entire effort was to see if high-cadence Hα imagery 

could be used to detect, and ultimately predict, solar flares. We made two major choices of tools 

to investigate this possibility. First, we subjected the selected sequences of Hα images to 

Principal Component Analysis to derive the eigenvectors and eigenvalues of the one-minute 

interval grids of pixel values. Second, we chose multivariate discriminant analysis as the data-

driven statistical technique to derive relationships between predictors (Hα data in the form of 

eigenvectors) and predictands (degree of flaring). Ultimately we settled on four degrees of 

flaring, or flaring level indicators, for the predictand categories. We noticed that the temporal 

patterns of the leading eigenvectors from the selected sequences seemed to fall into these four 

groups. At the same time, the four groups were independently corroborated by peak x-ray flux 

associated with the corresponding degree of flaring. We used the combination of leading 

eigenvector patterns and peak x-ray flux to assign each of the selected sequences to the four 

flaring categories. It then remained to determine the most effective way to stage the associated 

predictor vectors in order to optimize diagnosis of flare category probability. 

 

In this study, we tried two methods involving individual image time flare category probability 

diagnosis. First, we employed the legacy flare category probability development and application 

algorithms from the original study. This used the straight eigenvector values from 25-50 leading 

eigenvectors as the elements of the predictor vectors at each image time. Area-averaged Hα of 

the sub-region from which the images were extracted, along with x-ray flux at the same one-

minute time intervals served to identify the rise times of the flare if present. It was at these times 
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that predictands associated with the prescribed flaring level were assigned. Predictor vectors 

paired with the predictand for all image times in 60 image sequences went into the discriminant 

analysis routine. The resulting discriminant vectors were applied to 30 independent image 

sequences of individual image time predictor vectors derived from the leading eigenvectors. The 

probability of each of the four flaring categories was diagnosed at each application image time. 

Comparing them with the prescribed flaring level category (non-zero only at flare rise times) 

yielded statistical metrics that measured the diagnosis performance. 

 

We devised a second individual image time flare category probability diagnosis method by 

modifying the first one in two major ways. First, we used one-minute changes in the leading 

eigenvectors as predictors in place of the full eigenvector values. Second, we eliminated use of 

area-average Hα intensity to set the flare rise times, relying solely on x-ray flux. 

 

In terms of the statistical metrics by which we gauged flare category probability diagnosis 

performance, the two individual image time methods performed about the same. The probability-

weighted diagnosed flare category at each time was compared with the observed flaring category 

in computing Brier Score (essentially mean squared difference), Bias, and what we called 

Diagnosis Uncertainty. The latter was the average over all image times of one-minus-largest 

category probability. Both methods showed a consistent positive bias, indicating a tendency to 

produce false alarms. In some non-flaring sequences, there was a tendency to diagnose an 

excessive number of times indicating weak flaring. Also, because of an insufficient degree of 

discrimination among the flaring categories, diagnosis uncertainty was unacceptably large, 

averaging 39 to 48 percent depending on the method and set of development and application 

image sequences used. This means that the largest of the four category probabilities diagnosed 

was typically 52 to 61 percent – not nearly as definitive as would be desired. Neither of the two 

individual image time methods could create enough distinction among the four flaring categories 

to avoid frequent misdiagnosis, especially of flaring when the sub-region was not flaring. 

 

A brief analysis of why some sequences were diagnosed well when others weren’t seemed to 

indicate that there was significant variation of the eigenvector patterns within each flaring 

category. This is a common problem in discriminant analysis – excessive within-group scatter. It 

is not clear that this would be remedied by developing the technique over more image sequences. 

It might only broaden the range of predictor pattern variations. Another issue was that rises and 

falls in the eigenvector curves of the non-flaring sequences would be mistaken for flare-related 

inflections when the flaring category probabilities were determined. Again, there just wasn’t 

enough distance in discriminant space between the four groups to clearly delineate the flaring 

category associated with an independent predictor vector. 

 

We tried a radically different approach to flare category diagnosis by involving the image 

sequence as a whole rather than trying to diagnose at individual image times. We represented the 

patterns of the leading eigenvectors through frequency distributions of their one-minute interval 

changes. The predictor vector elements for a given image sequence were the ten bin values of 

frequency of occurrence of one-minute change for eight leading eigenvectors. We used the 

prescribed flaring category as the predictand for the image sequence. Again, the degree of 

distinction among the flaring categories fell short. The collective frequency distributions among 

the four flaring categories were insufficiently distinct to produce a clearly indicated most likely 
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flaring category. In fact, the diagnosis uncertainty was even greater than with the individual 

image time diagnosis methods. We even limited specifying predictor elements from frequency of 

occurrence to the image times prior to the flares, since the differences among the flaring 

categories seemed more distinct during those times. But this resulted in fewer image times from 

which to derive the frequency distribution, making them even more variable among the 

sequences, so the technique was less able to discriminate. 

 

Our original ultimate goal in this endeavor was to be able to predict flaring from the high-

cadence ISOON data. Unfortunately, we were not able to achieve a high enough level of flare 

diagnosis skill to go beyond that level. We still feel that the apparent distinction among the 

flaring categories as evident in the Hα eigenvectors may have potential for useful short-term 

flare prediction. However, we feel that we have reached the limit in achieving that goal insofar as 

applying multivariate discriminant analysis. In the future, other data-driven statistical techniques 

will be implemented in order to try to capitalize on that potential. 
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